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Abstract
We show a broad class of constraints compatible with the Itoh–Narita–
Bogoyavlenskii lattice hierarchy. All these constraints can be written in the
form of a discrete conservation law Ii+1 = Ii with an appropriate homogeneous
polynomial discrete function I = I [a].

PACS number: 02.30.Ik

1. Introduction

The aim of this paper is to show explicitly some class of constraints compatible with the
extended Volterra lattice

a′
i = ai

⎛
⎝ n∑

j=1

ai−j −
n∑

j=1

ai+j

⎞
⎠ , (1)

which we consider as a single evolution equation on the unknown function ai ≡ a(i, x) of
discrete variable i ∈ Z and continuous variable x ∈ R. For any n � 1, this equation is known
to be integrable discretization for the Korteweg-de Vries equation [5]. Narita in the work
[9], making use of Hirota’s method, showed that the extended Volterra lattice admits soliton
solutions. In [6] Itoh considered Lotka–Volterra systems which are equivalent to equation (1)
supplemented by the specific periodicity condition ai+2n+1 = ai . In what follows we call
equation (1) the Itoh–Narita–Bogoyavlenskii (INB) lattice. Perhaps the most interesting case
from the point of applications is n = 1, corresponding to the Volterra lattice [7, 17].

Equation (1) is known to admit the hierarchy of pair-wise commuting generalized
symmetries which, as is shown in the paper, can be written in the form

∂sai = (−1)sai

(
S

(n,s)
sn−1(i − (s − 1)n + 1) − S

(n,s)
sn−1(i − sn)

)
, (2)

where ∂s stands for derivative with respect to the evolution parameter ts with s � 2. The
functions S(n,l)

s [a] will be explicitly defined in section 3. The INB equation itself can be written
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in the form (2) with t1 = x and S
(n,1)
n−1 = ∑n

j=1 ai+j−1. When the hierarchy is represented as
(2), it is clear that the stationarity condition attached to some evolution parameter ts , can be
written as the periodicity condition S

(n,s)
sn−1(i + n + 1) = S

(n,s)
sn−1(i). It turns out that there exists a

wide class of homogeneous polynomial discrete functions I = I [a] defined by1

Ii =
∑

(j1,...,jl+1)∈J

ai+j1 · · · ai+jl+1

for which the periodicity condition Ii+T = Ii , with respective period T ∈ Z is consistent with
the INB lattice and its hierarchy. The set of all invariant constraints considered in the paper
naturally includes periodicity conditions ai+T = ai .

We consider equation (1) and its hierarchy as a simplest case of reduction of the so-called
Darboux-KP (DKP) chain hierarchy which in fact is a bi-infinite sequence of KP hierarchies
and our main goal, in fact, is to approve our previous results [15] on this simple example.
For completeness, we give, in the next section, preliminaries on our approach to investigate
some class of integrable lattices related to the KP hierarchy. In section 3, we show compatible
constraints for equation (1) in its explicit form in theorem 3. Section 4 is devoted to the Volterra
lattice and its reductions. We write, in this section, attached systems of ordinary differential
equations generated by corresponding constraints and its discrete symmetry transformations.
Also we claim the relations defining spectral curves associated with the Lax matrices.

2. Preliminaries on the DKP chain hierarchy and its invariant submanifolds

2.1. DKP chain hierarchy

In [13, 14] we have developed an approach in which a broad community of integrable
differential-difference equations (lattices) are related to the KP hierarchy. In a paper [15]
we have shown that these integrable lattices admit a wide class of constraints compatible
with all higher flows of its hierarchy. An objective of this section is to provide the reader by
information about the DKP chain hierarchy and its reductions.

Integrable lattices in our geometric set-up naturally appear as a result of reductions of a
bi-infinite sequence of KP hierarchies whose equations of motion we write in the form of two
evolution generating equations [8]

∂sh(i) = ∂H(s)(i), (3)

∂sa(i) = a(i)(H (s)(i + 1) − H(s)(i)). (4)

The first relation (3) yields evolution equations of the KP hierarchy in the form of local
conservation laws [18]. Laurent series: generating functions for conserved densities and the
corresponding fluxes of the KP hierarchy

h(i) = z +
∑
k�2

hk(i)z
−k+1 and H(s)(i) = zs +

∑
k�1

Hs
k (i)z−k,

are related with KP wavefunctions

ψi =
⎛
⎝1 +

∑
k�1

wk(i)z
−k

⎞
⎠ exp

⎛
⎝∑

s�1

tsz
s

⎞
⎠

as

h(i) = ∂ψi · ψ−1
i and H(s)(i) = ∂sψi · ψ−1

i ,

1 Here J ⊂ Zl+1 is some finite indexing set.
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respectively. In turn, the Laurent series a(i) = z +
∑

k�1 ak(i)z
−k+1 is calculated as

a(i) = zψi+1 · ψ−1
i . We call equations (3) and (4) the DKP chain hierarchy. It is useful

to rewrite generating equation (4) in the form of the differential-difference conservation law

∂sξ(i) = H(s)(i + 1) − H(s)(i)

with

ξ(i) = ln a(i) = ln z +
∑
k�1

ak(i)z
−k − 1

2

⎛
⎝∑

k�1

ak(i)z
−k

⎞
⎠

2

+
1

3

⎛
⎝∑

k�1

ak(i)z
−k

⎞
⎠

3

− · · ·

≡ ln z +
∑
k�1

ξk(i)z
−k.

Thus, more exactly, equations (3) and (4) can be written as follows:

∂shk(i) = ∂Hs
k−1(i), ∂sξk(i) = Hs

k (i + 1) − Hs
k (i).

To establish relationship of integrable lattices such as INB lattice (1), Shabat dressing
lattice [10], Toda lattice [16], Belov–Chaltikian lattice [3] and so on, with the KP hierarchy,
the following two theorems are useful.

Theorem 1 [13]. The submanifold Sn
l−1 defined by the condition

zl−na[n](i) ∈ H+(i), ∀ i ∈ Z (5)

is tangent with respect to the DKP chain flows defined by (3) and (4).

Theorem 2 [14]. The chain of inclusions of invariant submanifolds

Sn
l−1 ⊂ S2n

2l−1 ⊂ S3n
3l−1 ⊂ · · · ⊂ Skn

kl−1 ⊂ · · ·
is valid.

Here, by definition

a[s](i) =

⎧⎪⎨
⎪⎩

∏s
j=1 a(i + j − 1), s � 1

1, s = 0∏|s|
j=1 a−1(i − j), s � −1

are discrete Faà di Bruno iterates of Laurent series a(i). It is obvious that the coefficients a
[s]
j

defined through the relation2

a[s] = zs +
∑
j�1

a
[s]
j zs−j

are the discrete functions of (a1, . . . , aj ). These functions are related with each other by the
obvious relation

a
[s1+s2]
k (i) = a

[s1]
k (i) +

k−1∑
j=1

a
[s1]
j (i)a

[s2]
k−j (i + s1) + a

[s2]
k (i + s1) = (s1 ↔ s2). (6)

Here the symbol (s1 ↔ s2) denotes the same right-hand side of this relation but with mutually
replaced s1 and s2. This relation will be extensively used throughout the paper.

We observe that the condition (5) can be written in the form of the following generating
relation:

zl−na[n] = H(l) +
l∑

k=1

a
[n]
k H (l−k).

2 Here and in what follows we use simplified notations a[s] ≡ a[s](i), a
[s]
j ≡ a

[s]
j (i) in formulae which contain no

shifts with respect to discrete variable i ∈ Z.

3
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2.2. nth discrete KP hierarchy and its reductions

When restricting the DKP chain hierarchy on Sn
0 , all the coefficients Hs

k become discrete
polynomial functions of (a1, . . . , ak+s) defined by [13, 15]

Hs
k = F

(n,s)
k ≡ a

[sn]
k+s +

s−1∑
j=1

q
(n,sn)
j a

[(s−j)n]
k+s−j , (7)

where q
(n,r)
k = q

(n,r)
k [a1, a2, . . . , ak], by definition, are polynomial discrete functions defined

through the generating relation

zr = a[r] +
∑
j�1

q
(n,r)
j zj (n−1)a[r−jn] (8)

which yields

a
[r]
k +

k−1∑
j=1

a
[r−jn]
k−j q

(n,r)
j + q

(n,r)
k = 0, ∀ k � 1. (9)

Let us write the first few q
(n,r)
k

q
(n,r)
1 = −a

[r]
1 , q

(n,r)
2 = −a

[r]
2 + a

[r]
1 a

[r−n]
1 ,

q
(n,r)
3 = −a

[r]
3 + a

[r]
1 a

[r−n]
2 + a

[r−2n]
1 a

[r]
2 − a

[r]
1 a

[r−n]
1 a

[r−2n]
1 .

It can be checked that a more general relation than (9), namely [15]

a
[r]
k (i) +

k−1∑
j=1

a
[r−jn]
k−j (i)q

(n,r−p)

j (i + p) + q
(n,r−p)

k (i + p) = a
[p]
k (i) (10)

with any p ∈ Z is valid. Solving this in favor of q
(n,r−p)

k (i + p) yields

a
[p]
k (i) +

k−1∑
j=1

q
(n,r−(k−j)n)

j (i)a
[p]
k−j (i) + q

(n,r)
k (i) = q

(n,r−p)

k (i + p).

One sees that, when restricting on Sn
0 , the DKP chain hierarchy is reduced to evolution

equations in the form of the differential-difference conservation law

∂sξk(i) = F
(n,s)
k (i + 1) − F

(n,s)
k (i), (11)

where F
(n,s)
k is given by (7). We refer to these equations with some fixed n � 1 as the nth

discrete KP hierarchy. It is worth noting that these equations, in fact, appear as a result of
the restriction of the DKP chain hierarchy on Sn

0 and the subsequent projection of dynamics
on the space M whose points are defined by infinite number of functions of discrete variable
(a1, a2, . . .). One can say that M has an infinite functional dimension. Let us denote by Mk

the space whose points are defined by the finite number (a1, . . . , ak) of functions of discrete
variable i and πk : M �→ Mk being a natural projection. It is obvious that the reduction of
the DKP chain hierarchy on the intersection Sn

0 ∩ Sp

l−1 is equivalent to restriction of the flows
given by (11) on some submanifold Mn,p,l ⊂ M. This submanifold is defined by infinite
number of algebraic equations [15]

J
(n,p,l)

k [a1, . . . , ak+l] = 0, k � 1 (12)

with

J
(n,p,l)

k (i) = a
[p]
k+l (i) − a

[ln]
k+l (i) −

l−1∑
j=1

q
(n,ln−p)

j (i + p)a
[(l−j)n]
k+l−j (i).

4
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Observe that in the case p = ln the relations J
(n,ln,l)
k = 0 are identities and therefore produce

no nontrivial submanifold of M. This is so because Sn
0 ⊂ S ln

l−1 thanks to theorem 2.
Taking into account (10) we can also write

J
(n,p,l)

k (i) = q
(n,ln−p)

k+l (i + p) +
k−1∑
j=1

a
[−(k−j)n]
j (i)q

(n,ln−p)

k+l−j (i + p). (13)

Let us denote Q
(n,p,l)

k (i) = q
(n,ln−p)

k+l (i + p) and therefore one can rewrite the relation (13) as

J
(n,p,l)

k = Q
(n,p,l)

k +
k−1∑
j=1

a
[−(k−j)n]
j Q

(n,p,l)

k−j . (14)

It is evident that the submanifold Mn,p,l can be equivalently defined by algebraic equations
Q

(n,p,l)

k [a1, . . . , ak+l] = 0. Solving (14) in favor of Q
(n,p,l)

k yields

Q
(n,p,l)

k = J
(n,p,l)

k +
k−1∑
j=1

q
(n,−(k−j)n)

j J
(n,p,l)

k−j . (15)

By definition, one has Q
(n,p+n,l+1)

k (i) = Q
(n,p,l)

k+1 (i + n). Making use of this relation, (10) and
(15), one can prove that

J
(n,p+n,l+1)

k (i) = J
(n,p,l)

k+1 (i + n) +
k∑

j=1

a
[n]
j (i)J

(n,p,l)

k−j+1 (i + n). (16)

For Q
(n,p,l)

k we are able to write the following evolution equations

Dts Q
(n,p,l)

k (i) = Q
(n,p,l)

k+s (i + sn) +
s∑

j=1

q
(n,sn)
j (i + p)Q

(n,p,l)

k+s−j (i + (s − j)n)

− Q
(n,p,l)

k+s (i) −
s∑

j=1

q
(n,sn)
j (i − (s + k − j)n)Q

(n,p,l)

k+s−j (i)

which is easily derived from

Dts q
(n,r)
k (i) = q

(n,r)
k+s (i + sn) +

s∑
j=1

q
(n,sn)
j (i)q

(n,r)
k+s−j (i + (s − j)n)

− q
(n,r)
k+s (i) −

s∑
j=1

q
(n,sn)
j (i + r − (k + s − j)n)q

(n,r)
k+s−j (i). (17)

The latter, in turn, comes from the Lax equation attached to the linear problem for the
wavefunction � = {ψi : i ∈ Z} coded in (8) [12].

As was shown in [15], there exist weaker than (12) conditions invariant with respect to nth
discrete KP hierarchy equations (11). Desired constraints are written as periodicity conditions

I
(n,p,l)

k (i + n) = I
(n,p,l)

k (i) (18)

with

I
(n,p,l)

k (i) = J
(n,p,l)

k (i) +
k−1∑
j=1

a
[−p]
j (i + p)J

(n,p,l)

k−j (i)

= Q
(n,p,l)

k (i) +
k−1∑
j=1

a
[−p−(k−j)n)]
j (i + p)Q

(n,p,l)

k−j (i).

5
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Moreover, if the conditions (18) are valid then I
(n,p,l)

k do not depend on evolution parameters
ts , i.e., Dts I

(n,p,l)

k ≡ 0,∀s � 1. For these functions, we can write

I
(n,p+n,l+1)

k (i) = I
(n,p,l)

k+1 (i + n) − a
[−p−n]
k (i + p + n)I

(n,p,l)

1 (i + n)

in parallel with (16). It can be shown that the relationship of I
(n,p,l)

k ’s with wave KP functions
is given by

∑
j�1

I
(n,p,l)

j (i)z−j = zl − 1

ψi+p

⎛
⎝zlψi+ln +

l∑
j=1

zl−j q
(n,ln−p)

j (i + p)ψi+(l−j)n

⎞
⎠ . (19)

If d is any divisor of n, then the set of conditions I
(n,p,l)

k (i + d) = I
(n,p,l)

k (i) also produces
an invariant submanifold of the nth discrete KP hierarchy. We denote the corresponding
submanifold by N d

n,p,l . It is evident that Mn,p,l ⊂ N d
n,p,l ⊂ N n

n,p,l .
In the following section we consider invariant constraints for the Narita–Bogoyavlenskii

lattice which corresponds to the restriction of the nth discrete KP hierarchy on Mn,n+1,1. Our
aim to write invariant conditions appeared as a result of the intersection of Mn,n+1,1 and N d

n,p,l

in its explicit form.

3. Reductions for the INB lattice

3.1. Restriction of the nth discrete KP hierarchy on Mn,n+1,1. INB lattice

Let us consider the invariant submanifold Mn,n+1,1 of phase-space M defined by the algebraic
equations

J
(n,n+1,1)
k = −J

(n+1,n,1)
k = a

[n+1]
k+1 − a

[n]
k+1 = 0, k � 1 (20)

for some fixed positive integer n. Taking into account (6) we can rewrite (20) as
k−1∑
j=1

a
[n]
k−j (i)aj (i + n) + ak(i + n) = 0. (21)

One can easily check that these equations are solved by

ak(i) = a
[−n]
k−1 (i)ai (22)

where ai ≡ a1(i). Indeed, substituting the latter in (21) we have

ai+n

⎛
⎝a

[n]
k−1(i) +

k−2∑
j=1

a
[n]
k−j−1(i)a

[−n]
j (i + n) + a

[−n]
k−1 (i + n)

⎞
⎠

= ai+na
[0]
k−1(i) = 0.

Here we have used (6). The following technical proposition is valid.

Proposition 1. In virtue of relations (20)

a
[s]
k (i) =

s∑
j=1

a
[−n+j−1]
k−1 (i)ai+j−1, for s � 1 (23)

and

a
[s]
k (i) = −

|s|∑
j=1

a
[−n−j ]
k−1 (i)ai−j , for s � −1.

6



J. Phys. A: Math. Theor. 42 (2009) 454021 A K Svinin

Proof. Taking into account (6) and (22), one has

a
[s+1]
k (i) = a

[s]
k (i) +

k−1∑
j=1

a
[s]
k−j (i)aj (i + s) + ak(i + s)

= a
[s]
k (i) + ai+s

⎛
⎝a

[s]
k−1(i) +

k−2∑
j=1

a
[s]
k−j−1(i)a

[−n]
j (i + s) + a

[−n]
k−1 (i + s)

⎞
⎠

= a
[s]
k (i) + a

[−n+s]
k−1 (i)ai+s .

Making use of this formula one can successively to prove (23) for k = 2, 3, . . . by induction
with respect to s. �

With (23), we are able to calculate all ak as discrete functions of a to obtain

a2(i) = −ai

n∑
j=1

ai−j , a3(i) = ai

n∑
j1=1

ai−j1

⎛
⎝n+j1∑

j2=1

ai−j2

⎞
⎠ ,

a4(i) = −ai

n∑
j1=1

ai−j1

⎛
⎝n+j1∑

j2=1

ai−j2

⎛
⎝n+j2∑

j3=1

ai−j3

⎞
⎠

⎞
⎠

and so on.
What we learn from the above calculations is that the restriction of the nth discrete KP

hierarchy on Mn,n+1,1 and subsequent projection π1 : M �→ M1 generate the hierarchy of
evolution equations in the form of differential-difference conservation laws

∂sai = F
(n,s)
1 (i + 1) − F

(n,s)
1 (i)

together with conservation laws (11), where conserved densities ξk = ξk[a] and fluxes F
(n,s)
k [a]

are some homogeneous polynomials of the kth and (k + s)th power, respectively. For the first
flow we have

a′
i = F

(n,1)
1 (i + 1) − F

(n,1)
1 (i)

= a
[n]
2 (i + 1) − a

[n]
2 (i).

To calculate the right-hand side of this equation as a discrete function of a = ai , it is convenient
to use

a
[n+1]
2 (i) = a

[n]
2 (i) + a

[n]
1 (i)ai+n + a2(i + n)

= a
[n]
2 (i + 1) + a

[n]
1 (i + 1)ai + a2(i),

where a2(i) = a
[−n]
1 (i)ai = −a

[n]
1 (i − n)ai . Taking this into account, we obtain

a′
i = ai

(
a

[n]
1 (i − n) − a

[n]
1 (i + 1)

)

= ai

⎛
⎝ n∑

j=1

ai−j −
n∑

j=1

ai+j

⎞
⎠ ,

which is nothing but INB equation (1).

7
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3.2. The functions S(n,l)
s [a] and T (n,l)

s [a] and its properties

Let us prepare, for further use, the discrete functions S(n,l)
s [a] and T (n,l)

s [a] through

S(n,l)
s (i) =

∑
0�jl−1�···�j0�s

(
l−1∏
k=0

ai+kn+jk

)
(24)

with l � 0 and s � 0 and

T (n,l)
s (i) =

∑
0�j0<···<jl−1�s

(
l−1∏
k=0

ai+kn+jk

)

with l � 0 and s � l − 1. We observe that the functions S(n,l)
s satisfy the following relations:

S(n,l)
s (i) − S

(n,l)
s−d (i) =

d∑
j=1

ai+s−j+1S
(n,l−1)
s−j+1 (i + n), (25)

S(n,l)
s (i) − S

(n,l)
s−d (i + d) =

d∑
j=1

ai+(l−1)n+j−1S
(n,l−1)
s−j+1 (i + j − 1) (26)

for d = 1, . . . , s and

S(n,l)
s (i) =

s+1∑
j=1

ai+s−j+1S
(n,l−1)
s−j+1 (i + n)

=
s+1∑
j=1

ai+(l−1)n+j−1S
(n,l−1)
s−j+1 (i + j − 1).

For T (n,l)
s we have the identities

T (n,l)
s (i) − T

(n,l)
s−d (i + d) =

d∑
j=1

ai+j−1T
(n,l−1)
s−j (i + n + j), (27)

T (n,l)
s (i) − T

(n,l)
s−d (i) =

d∑
j=1

ai+(l−1)n+s−j+1T
(n,l−1)
s−j (i) (28)

with d = 1, . . . , s − l + 1 and

T (n,l)
s (i) =

s−l+2∑
j=1

ai+j−1T
(n,l−1)
s−j (i + n + j) (29)

=
s−l+2∑
j=1

ai+(l−1)n+s−j+1T
(n,l−1)
s−j (i). (30)
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3.3. A class of reductions for the INB lattice

With S(n,l)
s and T (n,l)

s in hand, we are in position to prove

Proposition 2. On Mn,n+1,1

J
(n,ln+s+1,l)
k (i) = T (n,k+l)

s (i − (k − 1)n) +
k−1∑
j=1

a
[−(k−j)n]
j (i)T (n,k+l−j)

s (i − (k − j − 1)n) (31)

for s � l and J
(n,ln+s+1,l)
k ≡ 0 for s = 0, . . . , l − 1 and

J
(n,ln−s−1,l)
k (i) = R(n,k+l)

s (i − (k − 1)n) +
k−1∑
j=1

a
[−(k−j)n]
j (i)R(n,k+l−j)

s (i − (k − j − 1)n) (32)

for s � 0, where R(n,k)
s (i) ≡ (−1)kS(n,k)

s (i − s − 1).

Let us give some remarks. It is accepted in (31) that T (n,k)
s ≡ 0 with s � k − 2.

For example, J
(n,ln+l+1,l)
k = a

[−n]
k−1 T

(n,l+1)
l . As a corollary of this proposition, one has

Mn,n+1,1 ⊂ Mn,ln+s+1,l , with l � 1 and s = 0, . . . , l − 1. We observe comparing (31)
and (32) with (13) that this proposition can be reformulated in the following equivalent form.

Proposition 3. On Mn,n+1,1

q
(n,s+1)
k (i) = (−1)kS(n,k)

s (i − (k − 1)n)

for s � 0 and

q
(n,−s−1)
k (i) = T (n,k)

s (i − (k − 1)n − s − 1)

for s � k − 1 and q
(n,−s−1)
k ≡ 0 for s = 0, . . . , k − 2.

From this proposition and the relation [12]

q
(n,s1+s2)
k (i) = q

(n,s1)
k (i) +

k−1∑
j=1

q
(n,s1)
j (i)q

(n,s2)
k−j (i + s1 − jn) + q

(n,s2)
k (i + s1) = (s1 ↔ s2)

we obtain two identities

S(n,l)
s (i) +

l−1∑
j=1

(−1)jS(n,l−j)
s (i)T (n,j)

s (i + (l − j)n) + (−1)lT (n,l)
s (i) = 0

and

T (n,l)
s (i) +

l−1∑
j=1

(−1)jT (n,l−j)
s (i)S(n,j)

s (i + (l − j)n) + (−1)lS(n,l)
s (i) = 0

establishing the relationship between the discrete functions S(n,l)
s [a] and T (n,l)

s [a].

Proof of proposition 2. To save the space we restrict ourselves by the sketch of the proof.
We prove, by induction with respect to k, the validity of (31) for l = 0, i.e. that on Mn,n+1,1

a
[s+1]
k (i) = T (n,k)

s (i − (k − 1)n) +
k−1∑
j=1

a
[−(k−j)n]
j (i)T (n,k−j)

s (i − (k − j − 1)n). (33)

9
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In the case k = 1 one has a
[s+1]
1 (i) = ∑s

j=0 ai+j = T (n,1)
s (i), by definition. Suppose now that

the relation (33) is already proved for k = 1, . . . , k0. Then, for these values of k and arbitrary
m ∈ Z we can show that

a
[m+s+1]
k (i) − a

[m]
k (i) = T (n,k)

s (i + m − (k − 1)n)

+
k−1∑
j=1

a
[m−(k−j)n]
j (i)T (n,k−j)

s (i + m − (k − j − 1)n).

In particular

a
[−n+s+1]
k (i) − a

[−n]
k (i) = T (n,k)

s (i − kn) +
k−1∑
j=1

a
[−(k−j+1)n]
j (i)T (n,k−j)

s (i − (k − j)n). (34)

Taking into account (23), we have

a
[s+1]
k+1 (i) − a

[−n]
k (i)T (n,1)

s (i) =
s∑

j=1

(
a

[−n+j ]
k (i) − a

[−n]
k (i)

)
ai+j .

Then taking into account (30) and (34) we obtain

a
[s+1]
k+1 (i) − a

[−n]
k (i)T (n,1)

s (i) =
k−1∑
j=1

a
[−(j+1)n]
k−j (i)T (n,j+1)

s (i − jn) + T (n,k+1)
s (i − kn).

Therefore we prove that if (33) is valid for k = 1, . . . , k0, then it is true for k = k0 + 1. Thus,
by induction, the relation (31) is proven for l = 0. For remaining values l � 1 the functions
J

(n,ln+s+1,l)
k are calculated with the help of recurrence relation (16). Similar reasonings are

used to prove (32). �

With proposition 3 we can easily write equations of the INB lattice hierarchy. To this
aim, we use the fact that on Mn,n+1,1 one has

Q
(n,n+1,1)
k (i) = q

(n,−1)
k+1 (i + n + 1) = 0, ∀ k � 1.

Then from (17) we have

∂sq
(n,−1)
1 (i) = q

(n,−1)
1 (i)

(
q(n,sn)

s (i) − q(n,sn)
s (i − n − 1)

)
, (35)

where q
(n,−1)
1 (i) = ai−1, by definition. According to proposition 3, on Mn,n+1,1 one has

q(n,sn)
s (i) = (−1)sSs

sn−1(i − (s − 1)n). Substituting the latter in (35) we obtain the evolution
equations of the INB hierarchy (2).

Now we would like to write invariant constraints corresponding to the submanifold
Mn,n+1,1 ∩ N d

n,p,l , where d is any divisor of n or n + 1. From proposition 2, we

know that I
(n,ln+s+1,l)
1 (i) = T (n,l+1)

s (i), for s � l and I
(n,ln−s−1,l)
1 (i) = R(n,l+1)

s (i) =
(−1)l+1S(n,l+1)

s (i − s − 1) for s � 0. It is natural to require so as intersection Mn,n+1,1 ∩N d
n,p,l

to be nontrivial. This requirement means that condition I
(n,p,l)

1 (i + d) = I
(n,p,l)

1 (i) must
guarantee that I

(n,p,l)

k (i + d) = I
(n,p,l)

k (i) is identity for all k � 2. Unfortunately, we are able
to analyze this only for the case d = 1.

Theorem 3. Each one of the constraints

T (n,l+1)
s (i + 1) = T (n,l+1)

s (i), s � l (36)

and

S(n,l+1)
s (i + 1) = S(n,l+1)

s (i), s � 0 (37)

10
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is consistent with the INB lattice hierarchy.

From (27) and (28), with d = 1, we see that condition (36) can be rewritten as the relation

ai+ln+s+1T
(n,l)
s−1 (i + 1) = aiT

(n,l)
s−1 (i + n + 1). (38)

For (37), taking into account (25) and (26), with d = 1, we have the relation

ai+s+1S
(n,l)
s (i + n + 1) = ai+lnS

(n,l)
s (i). (39)

Proof of theorem 3. To prove theorem, there is a need only to show that intersection
Mn,n+1,1 ∩ N 1

n,p,l is nontrivial. Let us consider the condition (36). We observe that on

Mn,n+1,1 homogeneous discrete polynomials I
(n,p,l)

k [a] are calculated with the help of the
recurrence relation

I
(n,p,l)

k (i) = T (n,l+k)
s (i − (k − 1)n) −

k−1∑
j=1

T
(n,j)

p+(k−j)n−1(i − (k − 1)n)I
(n,p,l)

k−j (i). (40)

Suppose we already proved that in virtue of (36) the equation

I
(n,p,l)

j (i + 1) = I
(n,p,l)

j (i) (41)

is valid for j = 1, . . . , k − 1. Then the relation I
(n,p,l)

k (i + 1) = I
(n,p,l)

k (i) can be written as

T (n,l+k)
s (i − (k − 1)n + 1) − T (n,l+k)

s (i − (k − 1)n) −
k−1∑
j=1

(
T

(n,j)

p+(k−j)n−1(i − (k − 1)n + 1)

− T
(n,j)

p+(k−j)n−1(i − (k − 1)n)
)
I

(n,p,l)

k−j (i) = 0. (42)

Making use of the identities (27) and (28), we can rewrite equation (42) as

ai+p

(
T

(n,l+k−1)
s−1 (i − (k − 1)n + 1) − I

(n,p,l)

k−1 (i)

−
k−2∑
j=1

T
(n,j)

p+(k−j−1)n−2(i − (k − 1)n + 1)I
(n,p,l)

k−j−1(i)

)

= ai−(k−1)n

(
T

(n,l+k−1)
s−1 (i − (k − 2)n + 1) − I

(n,p,l)

k−1 (i)

−
k−2∑
j=1

T
(n,j)

p+(k−j−1)n−2(i − (k − 2)n + 1)I
(n,p,l)

k−j−1(i)

)
.

For k = 1 the latter coincides with (38). With the help of identities (27), (28) and recurrence
relation (40), we can show that the latter is equivalent to the same relation but with k replaced
by k − 1. Therefore, step-by-step, we can show that condition (36) guarantees that (41) is
valid for any j � 2. For (37) one can use similar reasonings. �

The following remark is in order. It is easy to prove that the stationarity condition
S

(n,l)
ln−1(i+n+1) = S

(n,l)
ln−1(i) mentioned in Introduction is equivalent to condition S

(n,l+1)
ln−1 (i+1) =

S
(n,l+1)
ln−1 (i) which is the particular case of (37). This example suggests that theorem 3 possibly

gives all invariant constraints corresponding to the submanifolds Mn,n+1,1 ∩ N d
n,p,l .

11
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4. Reductions of the Volterra lattice

4.1. Invariant constraints for the Volterra lattice and its hierarchy

In this section we apply theorem 3 in the important case of the Volterra lattice

a′
i = ai(ai−1 − ai+1). (43)

Evolution equations of the Volterra lattice hierarchy look as specialization of (2), namely

∂sai = (−1)sai

(
Ss

s−1(i − s + 2) − Ss
s−1(i − s)

)
with

S1
0(i) = ai, S2

1(i) = aiS
1
0(i + 1) + ai+1S

1
1(i + 1)

= aiai+1 + ai+1(ai+1 + ai+2),

S3
2(i) = aiS

2
0(i + 1) + ai+1S

2
1(i + 1) + ai+2S

2
2(i + 1)

= aiai+1ai+2 + ai+1{ai+1ai+2 + ai+2(ai+2 + ai+3)}
+ ai+2{ai+1ai+2 + ai+2(ai+2 + ai+3) + ai+3(ai+2 + ai+3 + ai+4)}

and so on.
Let us restrict ourselves in this section by consideration only reductions of the Volterra

lattice (43) generated by conditions of the form T (1,l+1)
s (i + 1) = T (1,l+1)

s (i). Equation (38) is
specified in this case as3

ai+s+l+1 = ai

T l
s−1(i + 2)

T l
s−1(i + 1)

. (44)

It should be noted that when l = 0, the latter is nothing but the periodicity condition ai+s+1 = ai .
For some value i = i0, we denote y1 = ai, . . . , ys+l+1 = ai+s+l—initial data for the discrete
equation (44). Then T l

s−1(i) = T l
s−1(y1, . . . , ys+l−1) is a homogeneous polynomial of the lth

power. In what follows we need in

Proposition 4. The function T l
s = T l

s (y1, . . . , ys+l ) is invariant with respect to reversing
transformation yk �→ ys+l−k+1, i.e.,

T l
s (ys+l , . . . , y1) = T l

s (y1, . . . , ys+l ). (45)

Proof. By induction with respect to parameter l. For l = 1 the relation (45) is evident.
Suppose that (45) is proved for some value of l. Then to prove it for l + 1 we make use of the
identity

T l+1
s (y1, . . . , ys+l+1) =

s−l+1∑
j=1

yjT
l
s−j (yj+2, . . . , ys+l+1)

=
s−l+1∑
j=1

ys+l−j+2T
l
s−j (y1, . . . , ys+l−j )

which stems from (29) and (30). �

Constraining the Volterra lattice (43) by (44) leads to the system of ordinary differential
equations

y ′
1 = y1

(
ys+l+1

T l
s−1(y1, . . . , ys+l−1)

T l
s−1(y2, . . . , ys+l )

− y2

)
,

3 Here we use the simplified notation T
(1,l)
s ≡ T l

s .
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y ′
k = yk(yk−1 − yk+1), k = 2, . . . , s + l, (46)

y ′
s+l+1 = ys+l+1

(
ys+l − y1

T l
s−1(y3, . . . , ys+l+1)

T l
s−1(y2, . . . , ys+l )

)
.

Compatibility of (44) with (43) guarantees that the mapping T : Rs+l+1 �→ Rs+l+1 given
by

T (yk) = yk+1, k = 1, . . . s + l, T (ys+l+1) = y1
T l

s−1(y3, . . . , ys+l+1)

T l
s−1(y2, . . . , ys+l )

(47)

yields the discrete symmetry for (46).
Observe that the mapping (47) admits the factorization T = s2 ◦ s1, where s1 and s2 are

two symmetry transformations acting on variables {y1, . . . , ys+l+1, x} as

s1(yk) = ys+l−k+1, k = 1, . . . , s + l,

s1(ys+l+1) = ys+l+1
T l

s−1(y1, . . . ys+l−1)

T l
s−1(y2, . . . ys+l )

, s1(x) = −x

and

s2(yk) = ys+l−k+2, k = 1, . . . , s + l + 1, s2(x) = −x,

respectively. With proposition 4, one can easily check that s2
1 = s2

2 = 1. This is evident,
of course, for reversing transformation s2. This symmetry is the elementary consequence
of reversing the symmetry of the Volterra lattice given by the transformation i �→ −i and
x �→ −x and supplemented by appropriate shift i �→ i + δ. Having in mind this symmetry
one immediately obtains s1 = s2 ◦ T . It is a nontrivial fact only that s2

1 = 1. The question to
be posed is: whether the group of discrete symmetry birational transformations generated by
s1 and s2 covers all birational symmetry transformations for the system (46) or not?

Let us spend some lines to give remarks. It should be noted papers (for example,
[1, 2, 11]) where the authors develop a general concept of boundary conditions compatible
with higher flows for some integrable lattices. In particular, Adler and Habibullin in [2]
showed that Bogoyavlensky–Volterra finite-dimensional systems associated with a simple Lie
algebras [4] can be derived as a result of imposing special boundary conditions for the Volterra
lattice. Our class of constraints yields finite-dimensional systems (46), including periodic
Volterra lattices, which we believe are integrable in Liouville sense.

4.2. Lax matrices and spectral curves

Making use of the relation (19) and proposition 3, we derive that in terms of KP wavefunctions,
the restriction of the discrete KP hierarchy on M1,2,1 ∩ N 1

1,l+s+1,l is defined by a pair of linear
equations

zψi+1 − aiψi−1 = zψi and zlψi+l +
l∑

j=1

zl−j T j
s (i + l − j + 1)ψi+l−j = wψi+l+s+1.

(48)

Here w = zl − ∑
j�1 Ij z

−j , where Ij ’s are values of integrals I
(1,l+s+1,l)
k (i). Observe that it

plays the role of the Floquet multiplier. It is evident that the pair (48) is equivalent to equation
Lϕ = 0 on vector-function ϕ = (ϕ1, . . . , ϕl+s+1) with some Lax matrix L. Here we denote
ϕ1 = ψi, . . . , ϕl+s+1 = ψi+l+s . One defines the spectral curve by condition det L = 0. It is

13
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worth differing two cases: (1) s = 2g − l with g � l and (2) s = 2g − l − 1 with g � l + 1.
Calculation shows that in the first case the spectral curve is given by algebraic equation

H0w
2 +

⎛
⎝z2g+1 +

g∑
j=1

Hjz
2g−j+1

⎞
⎠ w − z2g+l+1 −

l∑
j=1

Hjz
2g+l−j+1 = 0

while in the second case it looks like

H0w
2 −

⎛
⎝z2g +

g∑
j=1

Hjz
2g−j

⎞
⎠ w + z2g+l +

l∑
j=1

Hjz
2g+l−j = 0.

Rational functions Hj = Hj(y1, . . . , ys+l+1), by construction, are the first integrals of the
system (46).

5. Conclusion

In this paper, by using geometric approach, we have shown a broad class of constraints
compatible with dynamics defined by the INB lattice. All these reductions are defined by
some conditions which can be represented as the Nth order discrete equation

ai+N = R(ai, . . . , ai+N−1), (49)

with rational right-hand side R. Initial data for the integration INB lattice constrained by (49)
is given by vector

(
y0

1 , . . . , y
0
N

) ∈ RN which on the one hand gives initial data for discrete
equation (49) but on the other hand yields initial data for attached autonomous system of
ordinary differential equations such as (46), i.e., y0

k = yk(x0). In this connection, the first
problem to be addressed is the integration of the systems attached to some constraints in such
a way as to present in an appropriate form the corresponding solutions of the INB equation.
The second problem which we leave for further investigation is to approve these results on
other integrable lattices mentioned in a body of the paper.
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